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Abstract
The objective of this study was to establish if diabetes in the presence of polyneuropathy (PN) and/or cardiovascular
autonomic neuropathy (CAN) is associated with alterations in the amounts of 8-epi-PGF2a (IP) and its metabolites including
2, 3-dinor-8-epi-PGF2a (dinor-IP) and 2, 3-dinor-5, 6 dihydro-8-epi-PGF2a (dinor-dihydro-IP) in urine. Mass spectrometric
separation showed that excretion of IP was similar in the PN þ /CAN2 and PNþ /CANþ groups but higher than in the
PN2 /CAN2 group (n ¼ 103, 22 and 60, respectively; P , 0.05). By contrast, excretion of dinor-IP or dinor-dihydro-IP were
similar in the PN2 /CAN2 and PNþ /CAN2 groups but higher than in PNþ /CANþ group. Correlations were obtained
between IP and dinor-IP or dinor-dihydro-IP (r ¼ 0.30; P , 0.001 and r ¼ 0.31; P , 0.001, respectively). A significant
association was also observed between dinor-IP and dinor-dihydro-IP (r ¼ 0.48; P , 0.001). In conclusion, these biomarkers
should prove useful in studies evaluating the impact of therapeutic drugs or antioxidant interventions aimed at delaying the
onset of diabetic complications.
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Introduction

A growing body of evidence supports the theory that

oxidative stress represents a biochemical trigger for

neural dysfunction [1]. In animal models of experi-

mental diabetes, it has been proposed that this is due to

reduced endoneural blood flow [2]. Lipid peroxidation

products such as malondialdehyde, 4-hydroxyalkenals

and conjugated dienes are elevated in sciatic nerves from

diabetic rats [3–7]. Diminished glutathione, vitamin E

and ascorbic acid concentrations, and increased ratios of

oxidized to reduced glutathione and dehydroascorbate

to ascorbate have been observed in nerves from diabetic

animals [8–11]. Superoxide dismutase (Cu/Zn SOD),

calatase, glutathione peroxidase and quinone reductase

activities are also reduced in sciatic nerves in diabetic

rats [12,13]. Treatment of diabetic rats with insulin or

antioxidants is associated with improved neural function

[14–16].

Despite the evidence for increased lipid peroxidation

products in animal models of diabetic neuropathy [3–

7], data from patients with diabetic neuropathies is

lacking. We have recently shown that plasma 8-epi-

PGF2a (IP) levels are increased in diabetic patients

without polynueropathy (PN) and autonomic cardio-

vascular neuropathy (PN2 /CAN2) compared to age-

matched control subjects [17]. This finding was in

agreement with those previously reported other

investigators, employing similar GC-MS based assays

[18,19]. However, no differences in plasma IP levels
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were found in patients assigned to PNþ /CAN2 or

PNþ /CANþ groups. A possible explanation for the

absence of any differences in plasma IP concen-

trations, in the PNþ /CAN2 or PNþ /CANþ groups

compared to the PN2 /CAN2 group could be the

short half-life (about 16 min) of IP in blood with the

result that the measurement of IP in plasma will only

provide information regarding a discrete point in time

[20].

The quantification of urinary of IP and its

endogenous b-oxidation metabolites including 2,

3-dinor-8-epi-PGF2a (dinor-IP) and 2, 3-dinor-5,

6-dihydro-PGF2a (dinor-dihydro-IP) has been pro-

posed as being superior to that of circulating IP as

urinary levels represent an integrated index of

systemic non-enzymatic lipid peroxidation [21,22].

Figure 1 shows structural differences between IP and

its metabolites. In a previous study from this

laboratory, it has been established that simultaneous

measurement of urinary IP and its metabolites is

achieved by a stable isotope-dilution gas-chromato-

graphic-mass spectrometric procedure [23]. However,

to date no information is available on the simultaneous

measurement of urinary of IP, dinor-IP and dinor-

dihydro-IP in diabetic patients or any other clinical

condition associated with oxidative stress.

The objective of the present study was to examine

impact of the presence or absence of PN and/or CAN

on urinary excretion of IP, dinor-IP and dinor-

dihydro-IP in diabetic patients.

Material and Methods

Reagents

Authentic 9a, 11a-PGF2, 9a,11bPGF2, 9b,11aPGF2,

9a,11a-8epi-PGF2, 9a,11a-15R-8epi-PGF2, 9a,11a

-15R-trihydroxy-2, 3-dinor-8-epi-prosta-13E-en-1-oic

acid (2, 3-dinor-8-epi PGF2), 3,30,4,40tetradeuterated

9a,11a-PGF2 (PGF2-d4) and 3,30,4,40tetradeuterated

9a,11a-15S-8epi PGF2 (8-epi-PGF2-d4) were

obtained from SPI Bio (Massy Cedex, France). N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA), penta-

fluorobenzyl-bromide (PFB-Br), diisopropylethylamine

(DIPEA) and butylated hydroxytoluene (BHT) were

purchased from Sigma-Alderich Chemical Company

(Poole, Dorset, UK). Aminopropyl (NH2) and Silica

(Si) cartridges (500 mg) were from Waters Corporation

(Milford, MA, USA). 9a,11a-15R-trihydroxy-5,6D-

dihydro-2,3-dinor-8-epi-prosta-13E-en-1-oic acid

(2, 3-dinor-5, 6-dihydro-8-epi-PGF2) was a gift from

Dr Thierry Durand (Department of Pharmacy, Univer-

sity of Montpellier, Montpellier, France). All other

general-purpose chemicals and organic solvents were of

analytical grade and were from VWR International Ltd

(Poole, Dorset, UK).

Studied population

Diabetes was classified according to the World Health

Organisation/American Diabetes Association [24].

Inclusion criteria were type 1 or 2 diabetes and age

.18 years. Exclusion criteria were: (1) neuropathy

other than that of diabetic origin; (2) smokers or

ex-smokers ,1 year; (3) use of antioxidants (vitamin

C, vitamin E, lipoic acid, b-carotene, probucol) or

iron supplementation within the last 3 months;

(4) peripheral arterial disease (intermittent claudica-

tion or non-palpable foot pulse); (5) history of

coronary heart disease, myocardial infarction and

heart failure; and (6) any medication that might

adversely influence autonomic function. Patients were

interviewed to collect data on demographics, diabetes

type, diabetes duration, insulin treatment, medi-

cation, smoking habits and past history of neurological

symptoms. Criteria for the diagnosis and staging of

neuropathy and cardiovascular autonomic neuropathy

were as described previously [25–27]. This study was

conducted according to the principles of the Declara-

tion of Helsinki as revised in 2000 and all patients

provided informed written consent.

Clinical laboratory measurements

Glycosylated haemoglobin (HbA1c) was measured

using the high performance liquid chromatography

(HPLC) technique (Diamat, Bio-Rad, Munich,

Germany). Urinary albumin excretion rate was

determined from 12-h samples using the immuno-

nephelometric technique (Array Protein System,

Beckman, Fullerton, CA, USA). Blood glucose was

measured by a hexokinase-based method. Uricase

based assay was employed for the determination of

plasma uric acid (Boehringer Mannheim GmbH;

Diagnostica & Biochemicals). Plasma and urinary

creatinine were measured using a creatininase-based

test (Boehringer Mannheim GmbH; Diagnostica &

Biochemicals). Total plasma cholesterol and HDL

cholesterol were measured using the Cholesterol-C

Figure 1. Structural differences between 8-epi-PGF2a (IP), 2, 3-

dinor-8-epi-PGF2a (dinor-IP)and2,3-dinor-5,6-dihydro-8-epi-PGF2a

(dinor-dihydro-IP).
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high performance CHOD-PAP method (Boehringer

Mannheim GmbH; Diagnostica & Biochemicals).

Triglycerides were analysed by a GPO-PAP high-

performance enzymatic colorimetric test (Boehringer

Mannheim GmbH; Diagnostica & Biochemicals).

LDL was calculated from total plasma cholesterol,

triglycerides and HDL using the Friedewald formula as

follows:

LDL cholesterol ðmmol=lÞ

¼ Total cholesterol ðmmol=lÞ

2 ðTriglyceride ðmmol=lÞ=2:19Þ

2 HDL 2 cholesterol ðmmol=lÞ

Sample collection

Twelve-hour urine samples were collected in poly-

ethylene bottles. Aliquots (10 ml) removed and stored

at 2858C until analysed.

Isoprostane analysis

Urinary IP, dinor-IP and dinor-dihydro-IP excretions

were analysed stable isotope dilution gas chromato-

graphy-mass spectrometry (GC-MS) as described

previously [23]. Briefly, samples (2 ml) were mixed

with 8-epi-PGF2a-d4 (2.5 ng) as the internal standard

and total lipids were partitioned with ethyl acetate

(10 ml). The total lipid extracts were applied to NH2

cartridges (500 mg) and isoprostanes eluted

by washing the column with 5 ml of ethyl acetate/

methanol/acetic acid (10/85/5, v/v/v). The final

extracts from the NH2 chromatography step were

converted to pentaflourobenzyl (PFB) ester deriva-

tives. Samples from the PFB-ester derivatisation step

were applied to Si cartridges and isoprostanes eluted

by washing the cartridge with 5 ml of ethyl acetate/

methanol (95/5, v/v). Final determination was carried

out by GC-MS using the negative ion chemical

ionisation (NICI) with ammonia as reagent gas.

Quantitative analysis IP and its metabolites as PFB-

ester/TMS ether derivatives were performed using

selected ion monitoring (SIM) of the carboxylate

anion [M2PBF]2 at m/z 541, 543, 569 and 573 for

dinor-dihydro-IP, dinor-IP, IP and IP-d4, respectively.

Inter- and intra assay coefficients of variation for

urinary IP were 5 and 7%, respectively.

Statistical analysis

Continuous data were expressed by the arithmetical

mean ^ SEM. Differences between groups were

analyzed using parametric or non-parametric accord-

ing to their distribution. Linear regression analysis was

used to study associations between variables. The level

of significance was set to a ¼ 0.05. Analyses were

carried out using the SPSS for Windows (version 11)

software package.

Results

Table I shows the demographic and clinical details of

diabetic patients classified according to the presence

or absence of PN and/or CAN. The mean of age of

PN2 /CAN2 group was lower and diabetes duration

shorter compared with PNþ /CAN2 group or

PNþ /CANþ group. In addition, triglyceride levels

were lower in the PN2 /CAN2 group. PN2 /CAN2

group also had a trend for slightly lower glucose and

better glycaemic control (HbA1c) than those with

PNþ /CAN2 or PNþ /CANþ but these differences

did not achieve statistical significance. Plasma

creatinine concentrations were similar in the

PNþ /CAN2 and PNþ /CANþ groups but slightly

higher than in the PN2 /CAN2 group.

Table I. Clinical characteristic of diabetic patients segregated according to presence or absence of polyneuropathy (PN) and/or

cardiovascular autonomic neuropathy (CAN).

Variables PN2 /CAN2 PNþ /CAN2 PNþ /CANþ

Counts 60 103 22

Gender (m/f) 21/39 58/44 12/10

BMI (kg/m2) 27.68 ^ 0.66 28.29 ^ 0.51 26.70 ^ 0.98

Age (Years) 42.60 ^ 1.98 58.56 ^ 1.13* 54.36 ^ 2.86†

Diabetes duration (Years) 7.30 ^ 0.88 12.04 ^ 1.00* 18.52 ^ 2.00†,‡

Glucose (mmol/l) 9.98 ^ 0.36 10.72 ^ 0.27 11.01 ^ 0.61

HbA1c (%) 9.09 ^ 0.25 9.67 ^ 0.18 9.77 ^ 0.33

Type 1/Type 2 30/30 23/80 8/13

Triglycerides (mmol/l) 1.85 ^ 0.33 1.99 ^ 0.11* 2.24 ^ 0.31†

Cholesterol (mmol/l) 5.25 ^ 0.15 5.80 ^ 0.11* 5.54 ^ 0.22

HDL-cholesterol (mmol/l) 1.33 ^ 0.04 1.27 ^ 0.05 1.28 ^ 0.12

LDL-cholesterol (mmol/l) 3.14 ^ 0.14 3.62 ^ 0.10* 3.23 ^ 0.27

Plasma creatinine (mmol/l) 65.12 ^ 1.79 71.84 ^ 2.26* 74.74 ^ 10.05

Urinary creatinine (mmol/l) 6.42 ^ 0.61 5.57 ^ 0.39 5.11 ^ 0.92

Uric acid (mmol/l) 294 ^ 11.36 315 ^ 9.61 321 ^ 20.26

Albuminuria (no/yes) 49/10 60/40 9/12

Hypertension (no/yes) 42/15 40/61 10/12

Values represent mean ^ SEM.

* PN2 /CAN2 vs PNþ /CAN2 ; p , 0.05. † PN2 /CAN2 vs PNþ /CANþ ; p , 0.05. ‡ PNþ /CAN2 vs PNþ /CANþ ; p , 0.05.
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The differences, however, failed to reach statistical

significance. On the contrary, microalbuminuria was

more frequent in the PNþ /CAN and PNþ /CANþ

groups than in the PN2 /CAN2 group.

Figure 2 shows a typical [M2PFB]2 chromato-

gram of urinary IP and its metabolites following

GC-MS analysis. The traces at m/z 541, 543 and 569

represent dinor-dihydro-IP, dinor-8-IP and IP,

respectively. The chromatogram at m/z 573 represents

the tetraduerated 8-epi-PGF2a (IP-d4) as the internal

standard. Identification of the components in the

samples were based on comparison of relative

Figure 2. Gas chromatographic separation of urinary PGF2-like compounds as the PBF-ester/TMS ether derivatives following total

lipid with ethyl acetate and chromatography on aminopropy (NH2) and silica (Si) cartridges. First trace at m/z (541), second (m/z 543), third

(m/z 569) and fourth (m/z 573) represent 2, 3-dinor-5, 6-dihydro-8-epi-PGF2a, 2, 3-dinor-8-epi-PGF2a, 8-epi-PGF2a and tetradeutrated

8-epi-PGF2a as the internal standard, respectively.

J. Nourooz-Zadeh et al.726

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
N

ew
ca

st
le

 U
ni

ve
rs

ity
 o

n 
12

/0
2/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



retention times relative to that of an internal standard

as well as using a variety of chemical approaches as

previously described [28].

Urinary excretion of IP was similar in the

PNþ /CAN2 and PNþ /CANþ groups but higher

than in the PN2 /CAN2 group (0.26 ^ 0.06

nmol/mmol creatinine and 0.29 ^ 0.08 nmol/mmol

creatinine vs 0.16 ^ 0.02 nmol/mmol creatinine;

P , 0.05). There was no difference in dinor-IP

excretion between patients assigned to PNþ /CAN2

and PN2 /CAN2 groups (4.98 ^ 1.05 nmol/mmol

creatinine and 4.85 ^ 0.74 nmol/mmol creatinine).

On the other hand, the PNþ /CANþ groups yielded a

value of 2.41 ^ 0.53 nmol/mmol creatinine. In the

case of dinor-dihydro-IP, no difference was seen

between PNþ /CAN2 and PN2 /CAN2 groups

(1.38 ^ 0.20 nmol/mmol creatinine and 1.38 ^ 0.32

nmol/mmol creatinine). The PNþ /CANþ group

produced a value of 0.86 ^ 0.24 nmol/mmol

creatinine. Figure 3 shows the excretion of IP and it

metabolites in diabetic patients classified according to

the presence of PN and/or CAN.

No correlations were seen between IP, dinor-IP or

dinor-dihydro-IP with body mass index, age, duration

of diabetes, glucose, HbA1c, total cholesterol, LDL-

cholesterol, triglycerides or plasma creatinine. How-

ever, significant correlations were obtained between IP

and dinor-IP with HDL-cholesterol levels (r ¼ 0.191;

P , 0.01 and r ¼ 0.153; P , 0.05). Significant corre-

lations were also found between IP and dinor-IP or

dinor-dihydro-IP (r ¼ 0.296; P , 0.001 and

r ¼ 0.308; P , 0.001). Furthermore, there was a

correlation between dinor-IP and dinor-dihydro-IP

(r ¼ 0.477; P , 0.001).

Discussion

Accurate methods for the assessment of oxidative stress

in vivo are prerequisite for examining the relationship

between measures of oxidative stress and diabetic

complications. In this study, a reliable and sensitive

stable isotope dilution GC-MS procedure has been

employed for the simultaneous measurement of urinary

IP, dinor-IP and dinor-dihydro-IP as an index of

oxidative stress in diabetic patients with neuropathies.

Products of lipid peroxidation exert adverse effects

on a variety of processes such as inhibiting anti-

thrombin III activity, producing procoagulant activity,

enhancing platelet aggregation, modulating vascular

responses and acting as mitogens [29]. Increased

formation of lipid peroxidation products is shown to

be associated with neuronal damage in experimental

diabetic neuropathy [30]. In the present study, it was

found that dinor-IP was the major metabolite of IP

whilst the parent compound 8-epi-PGF2a was only a

minor component. This confirms previous data

obtained from healthy control subjects [23] and that

of Chiabrandos et al. [31] that dinor-IP is the major

urinary metabolite of IP in humans.

This study has revealed that the presence of PN in

diabetic patients (i.e. PNþ /CAN2 group) was

associated with a marked elevation (63%) in the

excretion of IP when compared to those without PN

(i.e. PN2 /CAN2). Excretion of IP was, however, not

altered by the additional occurrence of CAN

(i.e. PNþ /CANþ group). The observed elevation in

of urinary of IP in patients assigned to PNþ /CAN2

and PNþ /CANþ groups is unlikely to be explained

by deterioration in renal function because only a slight

increase (10%) was seen in plasma creatinine levels

between the PNþ /CAN2 and PN2 /CAN2 groups

and that the additional occurrence of CAN2 was not

associated with further changes in plasma creatinine

levels (Table I). These data provide support for the

notion that the observed elevation in of urinary of IP in

patients assigned to PNþ /CAN2 and PNþ /CANþ

groups may reflect increased oxidative stress.

In line with our findings, Davi et al. [32] reported

that excretion rates of IP were similar in type 1 and 2

diabetic patients, despite the group type 2 diabetic

Figure 3. Excretion rates for dinor-8-epi-PGF2a, 2, 3-dinor-5, 6-

dihydro-8-epi-PGF2a and their precursor 8-epi-PGF2a in diabetic

patients classified according to the presence and absence of PN

and/or CAN. The PN2 /CAN2 , PNþ /CAN2 and PNþ /CANþ

groups comprised 60, 103 and 22 patients, respectively. Data are

presented as the mean ^ S.E. $ PN2 /CAN2 vs PNþ /CAN2 ;

p , 0.05. # PN2 /CAN2 vs PNþ /CANþ ; p , 0.05.
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patients having more individuals with hypertension

and microvascular complications. A 37% reduction in

the urinary excretion of IP in type 2 diabetic subjects

following vitamin E supplementation (600 mg daily

for 2 weeks) was also observed. On the other hand,

Devaraj et al. [33] measured urinary IP in type 2

diabetics with and without macrovascular compli-

cations. In these patients, IP excretion rates were

found to be higher in patients with macrovascular

complications than in those without complications.

Moreover, it was shown that dietary supplementation

with a-tocopherol (1200 U/day) for 3 months led to a

50% reduction in IP concentrations. Taken together,

these findings would imply that the measurement of

urinary IP is a reliable marker of systemic non-

enzymatic lipid peroxidation in human.

Another observation from this study is that excretion

of dinor-IP and dinor-dihydro-IP was similar in the

PN2 /CAN2 and PNþ /CAN2 groups. By contrast,

the presence of CAN was linked to reductions in the

excretion of dinor-IP and dinor-dihydro-IP (38 and

45%, respectively). The reductions in dinor-IP and

dihydro-IP, however, did not achieve statistical

significance possibly because of the considerable

intra-individual variation in the values obtained for

the three groups of diabetic patients. It is of note that

large degrees of variance (up to 15-fold) in urinary

excretion rates for various prostaglandin-metabolites

have been reported by several investigators [34–42].

The observed decline in dinor-IP and dinor-hydro-IP

in the PNPþ /CANþ group is not explained by

impaired renal function as both subgroups, i.e

PNPþ /CAN2 and PNPþ /CANþ were matched

with respect to plasma creatinine concentrations as

well as the prevalence of individuals with albuminuria

and hypertension. These data suggest that the

observed alterations in urinary dinor-IP and dinor-

dihydro-IP in the PNþ /CANþ group reflect impaired

degradation of the parent compound as a consequence

of increased oxidative stress.

Moreover, variations in the ratios of dinor-dihydro-

IP or dinor-IP to IP were seen in relation to the

occurrence of PN and/or CAN. In the PN2 /CAN2

group, the ratio of dinor-dihydro-IP to IP was 8.6.

This ratio declined to 5.3 in the presence of PN and

was further reduced to 3.1 in the presence of

additional CAN. The respective values for the ratio

of dinor-IP to IP were 30.3, 18.7 and 9.3. These

findings indicate that simultaneous measurement of

dinor-IP and dinor-dihydro-IP and their precursor the

8-epi PGF2a (i.e. IP) is required in order to obtain an

accurate picture of the systemic non-enzymatic lipid

peroxidation in clinical settings linked oxidant injury.

In summary, it has been established that dinor-IP is

the predominant endogenous b-oxidation product

derived from the 8-epi-PGF2a in diabetic patients with

and without neurological complications. Importantly,

a divergence in the excretion of IP and its metabolites

was observed, with increased excretion of IP in those

patients with diabetic PN and/or CAN when

compared to those without neurological compli-

cations, but reduced excretion of its metabolites in

the PNþ /CANþ group than in those assigned to

PNþ /CAN2 or PN2 /CAN2 groups. These bio-

markers should prove useful in studies examining the

role of oxidant injury in human disease.
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